X
تبلیغات
پیکوفایل
رایتل
دوشنبه 5 شهریور‌ماه سال 1386

سیستم های پیشنهادگر در فروشگاه های الکترونیک(۱)

نویسنده: سعید رستگار

 

 

 

     حتما تا کنون برایتان پیش آمده که به توصیه دوستان یا آشنایان کتابی را بخرید یا به یک موسیقی گوش دهید. این شیوه تبلیغ زبانی باعث تجدید چاپ کتاب ها ، پرفروش شدن آلبوم های موسیقی و خلاصه موفقیت محصولات بسیاری شده است.دلیل اصلی این تاثیر در اعتماد و شناختی است که گیرنده پیام به فرستنده آن دارد.اعتمادی بسیار قوی تر از آنچه نسبت به رادیو ، تلویزیون ، نشریات و سایر رسانه ها وجود دارد.

     از طرف دیگر خیلی ها بدون راهنمایی و مشورت با فروشنده نمی توانند خرید کنند.آنها باید حتما قیمت ها و کالاها را مقایسه کنند ، پیشنهاد فروشنده را بشنوند و با همراهشان هم مشورت کنند تا بتوانند برای خرید تصمیم بگیرند.کاملا روشن است که فروشگاه های الکترونیک بطور بالقوه چنین قابلیتی را ندارند.هر چه این فروشگاه ها بزرگتر هم باشند وضعیت برای خریدار مبهم تر و انتخاب از میان چندین و چند کالا مشکل تر می شو و باید برای آن چاره ای اندیشیده شود

      بیایید ببینیم یک فروشنده چگونه به خریدار در فرآیند خرید کمک می کند؛ احتمالا فروشنده از شما در مورد کالایی که می خواهید ، مشخصات آن ، قیمت مطلوب و سایر اولویت هایتان سوال می کند.اگر بار اولی نباشد که به فروشگاه می روید احتمالا با خصوصیات اخلاقی و سلایق شما نیز تا حدودی آشنایی دارد.علاوه بر این فروشنده نسبت به موجودی فروشگاه اطلاعات نسبتا کاملی در اختیار دارد.یک فروشنده ی ماهر با تلفیق این اطلاعات است که می تواند راهنمای خریدار باشد.فکر می کنم کار تا حدودی ساده شد.ما در یک فروشگاه الکترونیک تقریبا تمام این اطلاعات را در اختیار داریم یا می توانیم بدست آوریم.تنها کاری که لازم است انجام دهیم ساخت یک فروشنده مجازی است تا فرآیند فروشی را که در بالا ذکر شد بطور خودکار برای مشتری انجام دهد.و این همان چیزی است که به ان سیستم های پیشنهادگر در تجارت الکترونیک می گوییم.

     همانطور که تا کنون فهمیده اید طراحی و پیاده سازی چنین سیستمی شامل دو گام به ظاهر مستقل (ولی کاملا مرتبط) است.گام نخست ، که سیستم در آن باید به جمع آوری داده های کاربران بپردازد و گام دوم که با تجزیه و تحلیل داده های گام نخست فهرستی از محصولات مرتبط با نیاز های کاربر تهیه و به وی ارائه می شود.در ادامه این مقاله بطور خلاصه در باره هر یک از این دو مرحله صحبت خواهیم کرد.

 

گام نخست ؛ جمع آوری داده های کاربران

اطلاعاتی که سیستم از کاربران بدست می آورد هم از لحاظ نوع و هم از لحاظ نحوه بدست آمدن متفاوتند.گیل و گارسیا(١) در تحقیق خود این اطلاعات را به سه گونه زیر تقسیم بندی کرده اند:

الف)داده های صریح:داده هایی که مستقیما بوسیله کاربر برای سیستم تعریف می شود مثل داده های مربوط به نام ، شغل ، آدرس و ... خریدار

ب)داده های ضمنی:داده هایی که از تعامل کاربر با سایت بدست می آیند مثل سابقه گشت . گذار و خرید های قبلی کاربر

ج)داده های مرکب:داده هایی که با استفاده از تکنیک های مفهومی و از ترکیب داده های صریح و ضمنی بدست می آیند.

خلاصه ای از داده های کاربران و نحوه دستیابی به آنها در جدول زیر آمده است.

 

نوع داده

نحوه بدست آوردن داده ها

محصولات

داده های صریح

داده های شخصی

نام

جنس

سن

شغل

درآمد

آدرس

پرس و جو های شخصی

سطح تخصص کاربر

حوزه های مورد علاقه کاربر

علائق مرتبط

داده های ضمنی

جنبه های ناوبری

تعداد بازدید ها

میزان زمان صرف شده در هر بازدید/صفحه

ترتیب URL های بازدید شده

فرآیند جستجو

خرید ها

تعداد اقلام خریداری شده

میزان پول خرج شده

تاریخ خرید

ترجیحات مربوط به خدمات خاص

جنس

داده های مرکب

 

تکنیک های مفهومی در ترکیب داده های صریح و ضمنی

 

 

اعتماد میان کاربران

خرید های مشابه مرتبط به محتوا

میزان حساسیت به قیمت

میزان تخصص در حوزه خدمات

خرید های محتمل و ...

 

نظرات (0)
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
نام :
پست الکترونیک :
وب/وبلاگ :
ایمیل شما بعد از ثبت نمایش داده نخواهد شد