پشتیبانی از روش های برنامه نویسی جستجویی.
مسائلی که AI به آن مرتبط می باشد همیشه پاسخگوی یک چنین نظریه های مهندسی نرم افزار استاندارد که شامل طراحی کامل و پردازش موفقیت آمیز و توسعه برنامه از خصوصیات و ویژگیهای دقیق است نمی تواند باشد. به دلیل طبیعت و ذات و نوع بخصوص AI به ندرت این احتمال به وجود می آید که بتوان ویژگیهای درست و کاملی از شکل نهایی یک برنامه AI قبل از ساخت حداقل یک proto type بدست آورد. اغلب موارد شناخت مسئله برنامه مربوط می شود به حل موارد درگیر مسئله از طریق توسعه برنامه . دلایل آن عبارت است از :
1 – بیشتر مسائل AI اصولا مشخصه های ضعیفی دارند.
به دلیل اینکه پیچیدگی زیادی برای پشتیبانی از سطح اطلاعات لازم می باشد به ندرت احتمال مشاهده یک مسئله و تشخیص کامل بودن نظریه دقیق که باید در جایگاه خودش باشد وجود دارد.
بهترین ساختارهای سطح نشانه ای که در یک مسئله مورد استفاده قرار گیرند به ندرت در مشخصه های سطح دانش قرار می گیرند. این نوع پیچیدگی و نامفهومی خود را به روش های معمول مربوط به نرم افزارهای مهندسی مرتبط نمی دانند چون که در این نوع برنامه ها لازمه اش این است که مشخصه های مربوط به توسعه به خصوص مسئله قبل از اینکه مرحله کدبندی آغاز شود شکل می گیرد.
یک عملکرد منطقی خود ذاتا برای مشخصه ها و خصوصیات معمولش بسیار مشکل تر از عملکرد نوعی طبقه بندی لیست یا ایجاد یک فایل سیستم است . حقیقتا این به چه معنی است؟
به عنوان مثال برای طراحی یک مدار یا بهبود یک بیماری این به چه معنی است؟ چگونه یک انسان ماهر و متخصص این عملیات ها را شکل می دهد؟ سطح رضایت بخش ایجاد یک محدوده مسئله داده شده چه چیزی است؟ چه نوع دانش و اطلاعاتی لازم می باشد؟ چه مشکلاتی ممکن است به دلایل نبود و یا غیر واقعی بودن اطلاعات پیش بیاید؟ به دلیل جوابهای به این قبیل سؤالات و دیگر سؤالات که در یک دوره کلی مطرح می شود و بسیار تخصصی می باشند و هر وقت این طور باشد ساختار آن نیز عمیق تر و پیچیده تر می شود به همین نسبت حل آن نیز به دقت بیشتری نیاز دارد.
2 – نظریاتی که برای حل مسائل به آن پراخته می شود در محدوده بخصوصی قرار می گیرند.
گر چه چهار چوب های کلی برای حل مسائل AI وجود دارد به عنوان مثال سیستم تولید جستجو در زبان دامنه و محدوده هر مسئله نیازمند روش های خاص خود می باشد.
بنابراین راه حل موفقیت آمیز مسئله به ندرت به طور کامل برای محدودیتهای جدید عمومیت و کاربرد دارد هر کاربرد تا حدودی یک نوع مسئله جدید می باشد .
3- ساختارها و اشکال بیان AIبه طور پیوسته باید توسعه و تجدید شود
توسعه AI یک پروسه تحقیقی مداوم است . توسعه سیستم های AI کاربردی در بسیاری از روشها بسط و توسعة این پروسه ها می باشند . گرچه تجربه عمدتاً به کاربرد زبان کمک می کند ولی عموماً هیچ جایگزینی برای کاربرد یک ایده و اینکه چگونه عمل می کند وجود ندارد .