تکنیک ها وزبانهای برنامه نویسی هوش مصنوعی- قسمت سوم

خلاصه پردازی طبقه بندی شده (سلسله مراتبی ) :

ساختار و سازمان آزمایش و تجربه در ارتباط با توصیفات کلاس های خلاصه سازی یکی از ابزارهای شناخت رفتار و ساختار سیستم های مرکب است که شامل برنامه های کامپیوتر می شوند .

همانند رفتار یک حیوان که ممکن است بدون توجه به فیزیولوژی سیستم عصبی نهفته در پشت آن مورد مطالعه قرار گیرد .

یک الگوریتم دارای خصوصیات مربوط به خود می باشد که کاملاً آن را از برنامه ای که آن را به کار می برد جدا می سازد .

به عنوان مثال دو نوع کاربر متفاوت جستجوی باینری را در نظر بگیرید .

 

یکی از آنها یعنی Fortran از محاسبات و طبقه بندی استفاده می کند و دیگری یعنی C++ از Pointer استفاده می کند که بتواند در جستجوی درون شاخه های binary کاربرد داشته باشد .

اگر دقیق تر نگاه کنیم این برنامه ها مثل هم می باشند چون اگر جز این باشد کاربردهای آنها نیز تفاوت خواهد شد . جداسازی الگوریتم از که مورد استفاده در کاربرد آن یکی از نمونه های خلاصه سازی سلسله مراتبی می باشد .

Allen   New ell بین سطح دانش و سطح نشانه ها برای توصیف یک سیستم هوشمند تفاوت قائل شده است.

سطح نشانه ها همراه سازماندهی به خصوصی مورد توجه قرار گرفته که برای بیان اطلاعات حل مسئله مورد استفاده قرار می گیرد. بحث مربوط به توجه به منطق به عنوان یک زبان یک نمونه از مواردی است که به سطح نشانه پرداخته است.

علاوه بر سطح نشانه سطح دانش است که توجه آن به مقدار و محتوی اطلاعات یک برنامه و شیوه استفاده از آن اطلاعات می باشد.

این نوع تمایز در ساختار و معماری سیستم هایی که بر اساس دانش و اطلاعات و سبک توسعه ای که آن را پشتیبانی می کتد منعکس می گردد.

به دلیل اینکه کاربرها برنامه ها را در قالب دانش و توانایی خودشان می شناسند بنابراین حائز اهمیت است که برنامه های AI دارای یک سطح خصوصیات اطلاعاتی باشند.

جداسازی اصل دانش و اطلاعات از ساختار کنترل این نظریه را آشکار می سازد و توسعه رفتار سطح دانش را ساده می سازد.

همانند این نیز سطح نشانه ای یک زبان توصیفی را تشریح می کند که شبیه قوانین و روشهای تولید یا منطق براساس دانش و اطلاعات می باشد.

جداسازی آن از سطح و دانش و اطلاعات نه برنامه نویس این اجازه را می دهد که به سمت خلاصه پردازی تاثیر پذیری و راحتی برنامه نویسی سوق پیدا کندکه در ارتباط با رفتار و عملکرد بالای برنامه نمی باشد.

کاربرد بیان سطح نشانه ای شامل یک سطح دوره پائین تر از ساختار برنامه می شود و بیانگر یک سری ملاحظات طراحی اضافی می شود.

نظریه چند مرحله ای نسبت به طراحی سیستم نمی تواند بیش از این مورد توجه قرار گیرد.

یعنی اینکه به برنامه نویس اجازه می دهد که با پیچیدگی نهفته شده در سطوح پائین تر خود را درگیر نکند و توجه و تاکیدش بر روی منابع مناسب با سطح فعلی خلاصه پردازی کند.

 

همچنین موجب می شود که اصول تئوری هوش مصنوعی عاری از کاربردهای خاص یا زبان برنامه نویسی باشد . این همچنین به ما قدرت توصیف یک کاربرد را می دهد و تاثیر گذاری خود را بر روی ماشین دیگر اثبات می کند بدون اینکه بر رفتارش در سطوح بالاتر تاثیر بگذارد .

سطح اطلاعات توصیف کننده توانائی های یک سیستم هوشمند است. محتوی دانش و اطلاعات مستقل از شکل پذیری مورد استفاده برای بیان آن است به همان اندازه که زبان بیان کاملا مؤثر می باشد .

توجه به سطح دانش شامل سؤالاتی از این قبیل است:

از این سیستم چه چیزی ساخته خواهد شد؟ چه اشیا و چه ارتباطی در آن محدوده مؤثر و مفید است ؟ چگونه یک اطلاعات جدید به سیستم اضافه می گردد؟

آیا واقعیات در طی زمان تغییر می کنند؟ چگونه و چطور سیستم نیازمند است که دلائل اطلاعات خود را ثابت کند؟ آیا محدوده ارتباطی دارای یک طبقه بندی درست و شناخته شده است؟

آیا این محدوده شامل یک سری اطلاعات نادرست و غیر ممکن است؟

تجزیه و تحلیل دقیق در این سطح یک گام مبهم در طراحی کلی ساختار یک برنامه می باشد.

در سطح نشانه تصمیمات درباره ساختارها صورت می گیرد که برای بیان و ایجاد دانش مورد استفادده قرار می گیرند. انتخاب یک زبان برای بیان یک مورد مربوط به سطح نشانه می باشد.

منطق یکی از چندین نوع اشکال است که اصولا در حال حاضر برای بیان دانش و اطلاعات در دسترس می باشد.

زبان بیان نه تنها می بایستی توانایی بیان اطلاعات مورد لزوم برای کاربر را داشته باشد بلکه می بایستی خلاصه و قابل توصیف و دارای کاربرد مؤثر باشد و می بایستی به برنامه نویس برای دستیابی و سازماندهی اصل و اساس اطلاعات کمک کند.

وقتی که بین سطح اطلاعات و سطح نشانه یک برنامه تمایز به وجود آمد ما می توانیم بین سطح نشانه و الگوریتم و ساختمان داده ها مورد استفاده برای کاربرد آن نیز تمایز قایل شویم. به عنوان مثال بدون تاثیرگذاری رفتار و عملکرد یک تحلیل گر برنامه که اساس منطقی داشته باشد می بایستی تاثیر ناپذیر از انتخاب بین یک سری جزئیات و یک مجموعه و دسته بازی باشد تا بتواند یک جدول مربوط به نشانه ها را به کار برد.

این تصمیمات کاربردی هستند و می بایستی در سطح نشانه قابل رؤیت باشند . بسیاری از الگوریتم و ساختمان داده ها در کاربرد بیان زبان  AI به کار می روند که از روشهای معمول علم کامپیوتر می باشند مثل شاخه ها و جداول بازی.

 

دیگر موارد در رابطه با AI بسیار تخصصی هستند و به گونه یک که مستعار بیان می شوند که از طریق متن و بخش های مربوط به LISP و PROLOG  بیان می شوند .

در سطح پائین تر مربوط به الگوریتم و ساختمان داده ها ( سطح زبان ) واقع شده است در این جا ست که زبان کاربردی برای برنامه مشخص می شود .

با این حال سبک برنامه نویسی مطلوب احتیاج به این دارد که ما یک خلاصه داده ای بسازیم که بین خصوصیات ویژه یک زبان برنامه نویسی و لایه های بالای آن قرار گیرد . نیازهای منحصر به فرد برنامه نویسی سطح نشانه ای تأثیر به روی طراحی و استفاده از زبانهای برنامه نویسی AI ایجاد می کند . علاوه بر این طراحی زبان می بایستی در برگیرنده و مطابق با ساختار آن که بر گرفته از سطوح پائین تر ساختمان کامپیوتر که شامل زبان اسمبلی و سیستم عامل و دستور العملهای ماشین و سطوح سخت افزار ی باشد .

و محدودیت های فیزیکی کامپیوتر می بایستی بر روی منابعی همچون حافظه و سرعت پردازشگر تأ کید کند . روش های PROLOG  , LISP در جهت متعادل کردن نیازهای سطح نشانه  و نیازهای نهفته در ساختار هر دو منبع مورد استفاده می باشند و هم چنین یک هدف هوشمند و ذهنی با اهمیت می باشند . در دنباله ما از ساختارهای سطح اطلاعات در محیطهای برنامه نویسی بر روی یک زبان کاربردی صحبت خواهیم کرد و سپس به مصرفی زبانهای عمده AI یعنی PROLOG , LISP می پردازیم .
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد